Privacy in Non-Private Environments

M. Bläser¹, A. Jakoby², M. Liśkiewicz², and B. Manthey²

¹Institut für Theoretische Informatik ETH Zürich, Switzerland

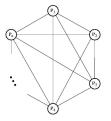
²Institut für Theoretische Informatik Universität zu Lübeck, Germany

Open Problems

イロト イロト イヨト イヨト ショー うへつ

Private Computation - Motivating Example

The secrete (YES/NO) voting:



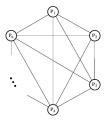
- Problem: Decide whether the majority votes for YES.
- Constraint: After the voting **no** P_i gets any additional information.

Open Problems

ション ふぼう ふぼう ふほう うらの

Private Computation - Motivating Example

The secrete (YES/NO) voting:



- Problem: Decide whether the majority votes for YES.
- Constraint: After the voting **no** P_i gets any additional information.
- The players are assumed to be *honest but curious*.

Private Computation in Information Theoretical Setting

1. given a network of *n* parties P_1, \ldots, P_n

- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network

イロト イポト イヨト イヨト ヨー のくべ

- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network
- 3. every party P_i has an individual secret x_i

イロト イロト イヨト イヨト ショー うへつ

- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network
- 3. every party P_i has an individual secret x_i
- 4. parties have unlimited computational power

イロト イロト イヨト イヨト ショー うへつ

- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network
- 3. every party P_i has an individual secret x_i
- 4. parties have unlimited computational power
- 5. every party P_i can use a private random string R_i

Private Computation in Information Theoretical Setting

- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network
- 3. every party P_i has an individual secret x_i
- 4. parties have unlimited computational power
- 5. every party P_i can use a private random string R_i

Compute a function $f(x_1, ..., x_n)$ on the network, such that no party gains some knowledge about the input of the other parties, that cannot be derived from the result of the function and its own input.

Private Computation in Information Theoretical Setting

- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network
- 3. every party P_i has an individual secret x_i
- 4. parties have unlimited computational power
- 5. every party P_i can use a private random string R_i

Formally: For every pair $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ with $x_i = y_i$ and $f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$

$$\Pr[c \mid x, R_i] = \Pr[c \mid y, R_i]$$

for every communication sequence c seen by P_i .

Private Computation in Information Theoretical Setting

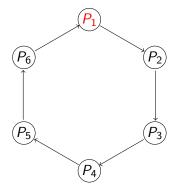
- 1. given a network of *n* parties P_1, \ldots, P_n
- 2. parties can exchange data via the links of the network
- 3. every party P_i has an individual secret x_i
- 4. parties have unlimited computational power
- 5. every party P_i can use a private random string R_i

The Model:

Ben-Or, Goldwasser, and Wigderson, STOC'88 and Chaum, Crépau, and Damgard, STOC'88.

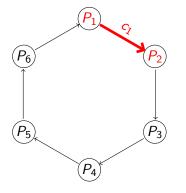
Open Problems

Example: Computing parity on a cycle



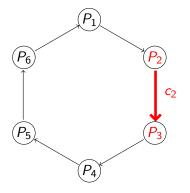
1. P_1 chooses $r \in_R \{0, 1\}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで



- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2

イロト イポト イヨト イヨト ヨー のくべ

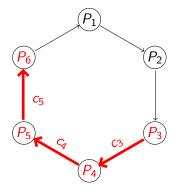


- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2
- 3. P_2 sends $c_2 = c_1 \oplus x_2$ to P_3

イロト イロト イヨト イヨト ショー うへつ

💷 🕥 < 🖓

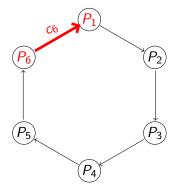
Example: Computing parity on a cycle



- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2
- 3. P_2 sends $c_2 = c_1 \oplus x_2$ to P_3

(日) (同) (日) (日) (日)

4. and so on ...

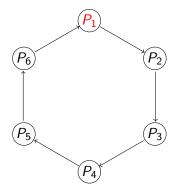


- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2
- 3. P_2 sends $c_2 = c_1 \oplus x_2$ to P_3

4. and so on ...

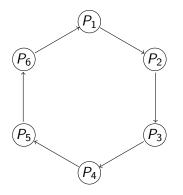
5. P_6 sends $c_6 = c_5 \oplus x_6$ to P_1

イロト イロト イヨト イヨト ショー うへつ



- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2
- 3. P_2 sends $c_2 = c_1 \oplus x_2$ to P_3
- 4. and so on ...
- 5. P_6 sends $c_6 = c_5 \oplus x_6$ to P_1
- 6. P_1 computes $c_6 \oplus r = x_1 \oplus \ldots \oplus x_6$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三里 - のへ⊙



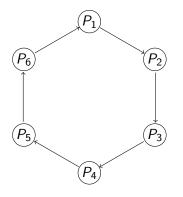
- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2
- 3. P_2 sends $c_2 = c_1 \oplus x_2$ to P_3

4. and so on ...

- 5. P_6 sends $c_6 = c_5 \oplus x_6$ to P_1
- 6. P_1 computes $c_6 \oplus r = x_1 \oplus \ldots \oplus x_6$

Every P_i $(i \neq 1)$ receives 0 with prob. $\frac{1}{2}$ and 1 with prob. $\frac{1}{2}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○



- 1. P_1 chooses $r \in_R \{0, 1\}$
- 2. P_1 sends $c_1 = r \oplus x_1$ to P_2
- 3. P_2 sends $c_2 = c_1 \oplus x_2$ to P_3

4. and so on ...

- 5. P_6 sends $c_6 = c_5 \oplus x_6$ to P_1
- 6. P_1 computes $c_6 \oplus r = x_1 \oplus \ldots \oplus x_6$

Every P_i ($i \neq 1$) receives 0 with prob. $\frac{1}{2}$ and 1 with prob. $\frac{1}{2}$. P_i learns nothing!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Open Problems

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Non-Private Environments

 All Boolean functions can privately be computed on any 2-connected network.

Non-Private Environments

- All Boolean functions can privately be computed on any 2-connected network.
- Non 2-connected networks: a complete characterisation of functions which *cannot* be computed privately by
 - two players Kushilevitz SIAM J.Disc.Math.'92 and Beaver TR, Harvard'89;

ション ふぼう ふぼう ふほう うらの

$Non-Private\ Environments$

- All Boolean functions can privately be computed on any 2-connected network.
- Non 2-connected networks: a complete characterisation of functions which *cannot* be computed privately by
 - two players Kushilevitz SIAM J.Disc.Math.'92 and Beaver TR, Harvard'89;
 - arbitrary connected but not 2-connected networks
 Bläser, Jakoby, Liśkiewicz, and Manthey, CRYPTO'02:
 Examples: Parity, OR, AND ...
 Corollary: no non-degenerate function can privately be computed if the network consists of three or more blocks.

$Non-Private\ Environments$

- All Boolean functions can privately be computed on any 2-connected network.
- Non 2-connected networks: a complete characterisation of functions which *cannot* be computed privately by
 - two players Kushilevitz SIAM J.Disc.Math.'92 and Beaver TR, Harvard'89;
 - arbitrary connected but not 2-connected networks
 Bläser, Jakoby, Liśkiewicz, and Manthey, CRYPTO'02:
 Examples: Parity, OR, AND ...
 Corollary: no non-degenerate function can privately be computed if the network consists of three or more blocks.
- Problem:

How functions that cannot privately be computed can still be computed while maintaining as much privacy as possible?

OUR CONTRIBUTION

OPEN PROBLEMS

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

Previous Results

Bar-Yehuda, Chor, Kushilevitz, and Orlitsky, IEEE Trans.Inf.Th.'93:

Two parties, each holding one n-bit input.

OUR CONTRIBUTION

OPEN PROBLEMS

イロト 不得下 イヨト イヨト ヨー うらぐ

Previous Results

Bar-Yehuda, Chor, Kushilevitz, and Orlitsky, IEEE Trans.Inf.Th.'93:

- Two parties, each holding one *n*-bit input.
- Minimum leakage of information for functions that are *not* privately computable.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへ⊙

Previous Results

Bar-Yehuda, Chor, Kushilevitz, and Orlitsky, IEEE Trans.Inf.Th.'93:

- Two parties, each holding one n-bit input.
- Minimum leakage of information for functions that are *not* privately computable.
- For several functions: tight bounds on the minimum amount of information that must be learned.

ション ふぼう ふぼう ふほう うらの

Previous Results

Bar-Yehuda, Chor, Kushilevitz, and Orlitsky, IEEE Trans.Inf.Th.'93:

- Two parties, each holding one n-bit input.
- Minimum leakage of information for functions that are *not* privately computable.
- For several functions: tight bounds on the minimum amount of information that must be learned.
- Sacrificing some privacy can reduce the number of messages required during the computation.

ション ふぼう ふぼう ふほう うらの

Our Contribution - Information Source

► Let A be a protocol computing f on G. Let c₁, c₂, c₃,... be a fixed enumeration of all communication strings seen by any player during the execution of A. Let for P_i

$$\mu_x(c_k) := \Pr[c_k \mid x, R_i],$$

where R_i is random string provided to P_i .

Our Contribution - Information Source

► Let A be a protocol computing f on G. Let c₁, c₂, c₃,... be a fixed enumeration of all communication strings seen by any player during the execution of A. Let for P_i

$$\mu_x(c_k) := \Pr[c_k \mid x, R_i],$$

where R_i is random string provided to P_i .

• The *information source* $S_A(i, a, b, R_i)$ is

 $\{ (\mu_x(c_1), \mu_x(c_2), \ldots) \mid x \in \{0, 1\}^n \land x_i = a \land f(x) = b \}$ and $\ell_{\mathcal{A}}(i, a, b) = \max_{R_i} \log |\mathcal{S}_{\mathcal{A}}(i, a, b, R_i)|.$

Our Contribution - Information Source

► Let A be a protocol computing f on G. Let c₁, c₂, c₃,... be a fixed enumeration of all communication strings seen by any player during the execution of A. Let for P_i

$$\mu_x(c_k) := \Pr[c_k \mid x, R_i],$$

where R_i is random string provided to P_i .

• The *information source* $S_A(i, a, b, R_i)$ is

 $\{ (\mu_x(c_1), \mu_x(c_2), \ldots) \mid x \in \{0, 1\}^n \land x_i = a \land f(x) = b \}$

and $\ell_{\mathcal{A}}(i, a, b) = \max_{R_i} \log |\mathcal{S}_{\mathcal{A}}(i, a, b, R_i)|.$

• If f is n-ary then for G = (V, E) with |V| = n define

$$\ell_G(i, a, b) := \min_{\mathcal{A}} \{ \ell_{\mathcal{A}}(i, a, b) \mid \mathcal{A} \text{ is protocol for } f \text{ on } G \}.$$

OUR CONTRIBUTION

Open Problems

Bridge Nodes

Theorem Any protocol can be modified such that the loss to all internal players is zero, while the loss to any bridge player does not increase.

Extracting Information from Probability Distribution

Let \mathcal{A} be a protocol for f on G, P_i be a bridge and $a, b \in \{0, 1\}$. Define $X := \{x \in \{0, 1\}^n \mid x_i = a \land f(x) = b\}$ and, for any communication string c,

 $\psi(c) := \{x \in X \mid \mu_x(c) > 0\}.$

• If $\ell_{\mathcal{A}}(i, a, b) = \ell_{\mathcal{G}}(i, a, b) = 0$, then $\psi(c) = X$ or $\psi(c) = \emptyset$.

ション ふぼう ふぼう ふほう うらの

Extracting Information from Probability Distribution

Let \mathcal{A} be a protocol for f on G, P_i be a bridge and $a, b \in \{0, 1\}$. Define $X := \{x \in \{0, 1\}^n \mid x_i = a \land f(x) = b\}$ and, for any communication string c,

 $\psi(c) := \{x \in X \mid \mu_x(c) > 0\}.$

- If $\ell_{\mathcal{A}}(i, a, b) = \ell_{\mathcal{G}}(i, a, b) = 0$, then $\psi(c) = X$ or $\psi(c) = \emptyset$.
- Theorem If ℓ_G(i, a, b) > 0, then for any A and every c that can be observed by P_i on x ∈ X,

ψ(c) is a non-trivial subset of X and
 there exist at least 2^{ℓ_G(i,a,b)} different such sets.

Extracting Information from Probability Distribution

Let \mathcal{A} be a protocol for f on G, P_i be a bridge and $a, b \in \{0, 1\}$. Define $X := \{x \in \{0, 1\}^n \mid x_i = a \land f(x) = b\}$ and, for any communication string c,

 $\psi(c) := \{x \in X \mid \mu_x(c) > 0\}.$

Recall: $F(\mu, \mu') = \sum_{c} \sqrt{\mu(c) \cdot \mu'(c)}$.

Theorem If A is optimal for P_i on a and b then for all R_i and all $\mu \neq \mu'$ in $S_A(i, a, b, R_i)$ we have $F(\mu, \mu') = 0$.

Hence, in order to gain information, P_i can distinguish the distributions from the actual communication he observes.

Communication Complexity and Private Computation

Let G has two blocks and P_i be the bridge node.

Theorem (Two-Blocs Networks) If f has communication complexity C then

 $\ell_G(i, a, b) \leq 2C$ for any a, b.

If for computing $f: \ell_G(i, a, b) \leq \lambda$ for any a, b then the communication complexity of f is bounded by $6\lambda + O(1)$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

k-Phases Protocols

Within a phase, a *bridge player* may exchange messages only once with each block he belongs to.

ション ふぼう ふぼう ふほう うらの

k-Phases Protocols

- Within a phase, a *bridge player* may exchange messages only once with each block he belongs to.
- ▶ 1-Phase Protocols on G
 - Let *G* consists of *d* blocks that all share bridge *P*.
 - In a 1-phase protocol: P communicates only once with each block he belongs to.
 - The loss of the protocol may depend on the order in which P communicates with the blocks.

ション ふぼう ふぼう ふほう うらの

k-Phases Protocols

- Within a phase, a *bridge player* may exchange messages only once with each block he belongs to.
- ▶ 1-Phase Protocols on G
 - Let *G* consists of *d* blocks that all share bridge *P*.
 - In a 1-phase protocol: P communicates only once with each block he belongs to.
 - The loss of the protocol may depend on the order in which P communicates with the blocks.

Corollary For symmetric functions, optimum order is to sort the blocks by increasing size.

k-Phases Protocols

- Within a phase, a *bridge player* may exchange messages only once with each block he belongs to.
- ▶ 1-Phase Protocols on G
 - Let *G* consists of *d* blocks that all share bridge *P*.
 - In a 1-phase protocol: P communicates only once with each block he belongs to.
 - The loss of the protocol may depend on the order in which P communicates with the blocks.

Corollary For symmetric functions, optimum order is to sort the blocks by increasing size.

Theorem For any symmetric function f there exists a 1-phase protocol A s.t. for every 1-phase A'

 $\ell_{\mathcal{A}}(i, a, b) \leq \ell_{\mathcal{A}'}(i, a, b)$ for all i, a, b.

OUR CONTRIBUTION

Open Problems

A Phase Hierarchy

Theorem For any k there is f such that every (k - 1)-phase protocol for f has an information loss that is exponentially greater than that of the best k-phase protocol.

Open Problems

- Optimal protocols for some concrete functions.
- ▶ Does exist for any f a protocol A on G s.t.

$$\ell_{\mathcal{A}}(i, a, b) = \ell_{\mathcal{G}}(i, a, b)$$
 for all i, a, b ?

(The answer is negative for 1-phase protocols.)